Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mar Pollut Bull ; 203: 116433, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723551

RESUMO

We examined the occurrence and levels of 19 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in 7 species of marine bivalve molluscs collected from four coastal cities of Shandong Province, China. Perfluorooctanoic acid (PFOA) was the most prevalent component, accounting for 68.1 % of total PFASs. The total PFASs in bivalve molluscs ranged from 0.86 to 6.55 ng/g wet weight, with the highest concentration found in Meretrix meretrix L. The concentration of total PFASs in bivalve molluscs showed the following trend: clams > scallops > oysters > mussels. Estimation on the human intake of PFASs from consumption of bivalve molluscs resulted in hazard ratios (HR) ranging from 0.12 to 6.40. Five of the seven species had HR >1, indicating high exposure risks associated with PFASs. Therefore, the occurrence of PFASs in marine biota is particularly concerning and further investigations on the sources of PFASs in Shandong are warranted.

2.
Ecotoxicol Environ Saf ; 276: 116311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615639

RESUMO

Prenatal environmental exposure could be an essential health risk factor associated with neurodevelopmental disorders in offspring. However, the exact mechanisms underlying the impact of prenatal PM2.5 exposure on offspring cognition remain unclear. In our recent study using a PM2.5 exposed pregnant mouse model, we observed significant synaptic dysfunction in the hippocampi of the offspring. Concurrently, the epigenetic regulator of KDM5A and the Shh signaling pathway exhibited decreased activities. Significantly, changes in hippocampal KDM5A and Shh levels directly correlated with PM2.5 exposure intensity. Subsequent experiments revealed a marked reduction in the expression of Shh signaling and related synaptic proteins when KDM5A was silenced in cells. Notably, the effects of KDM5A deficiency were reversed significantly with the supplementation of a Shh activator. Furthermore, our findings indicate that Shh activation significantly attenuates PM2.5-induced synaptic impairments in hippocampal neurons. We further demonstrated that EGR1, a transcriptional inhibitor, plays a direct role in KDM5A's regulation of the Shh pathway under conditions of PM2.5 exposure. Our results suggest that the KDM5A's inhibitory regulation on the Shh pathway through the EGR1 gene is a crucial epigenetic mechanism underlying the synaptic dysfunction in hippocampal neurons caused by maternal PM2.5 exposure. This emphasizes the role of epigenetic regulations in neurodevelopmental disorders caused by environmental factors.


Assuntos
Epigênese Genética , Proteínas Hedgehog , Hipocampo , Material Particulado , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais , Hipocampo/efeitos dos fármacos , Animais , Feminino , Gravidez , Transdução de Sinais/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Material Particulado/toxicidade , Proteína 2 de Ligação ao Retinoblastoma/genética , Exposição Materna/efeitos adversos , Sinapses/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
3.
Sci Total Environ ; 923: 171377, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458463

RESUMO

Aflatoxin B1 (AFB1) is a major mycotoxin contaminant showing in the environment and foods. In this study, the molecular initiating events (MIEs) of AFB1-induced steatohepatitis were explored in mice and human cell model. We observed dose-dependent steatohepatitis in the AFB1-treated mice, including triglyceride accumulation, fibrotic collagen secretion, enrichment of CD11b + and F4/80+ macrophages/Kupffer cells, cell death, lymphocytes clusters and remarkable atrophy areas. The gut barrier and gut-microbiota were also severely damaged after the AFB1 treatment and pre-conditioned colitis in the experimental mice aggravated the steatohepatitis phenotypes. We found that macrophages cells can be pro-inflammatorily activated to M1-like phenotype by AFB1 through an AHR/TLR4/p-STAT3 (Ser727)-mediated mitochondrial oxidative stress. The phenotypes can be rescued by AHR inhibitors in the mice model and human cell model. We further showed that this signaling axis is based on the cross-talk interaction between AHR and TLR4. Gene knock-up experiment found that the signaling is dependent on AFB1 ligand-binding with AHR, but not protein expressions of TLR4. The signaling elevated NLRP3 and two immune metabolic enzymes ICAM-1 and IDO that are associated with macrophage polarization. Results from intervention experiments with natural anti-oxidant and AHR inhibitor CH223191 suggest that the macrophage polarization may rely on AHR and ROS. Our study provides novel and critical references to the food safety and public health regulation of AFB1.


Assuntos
Aflatoxina B1 , Fígado Gorduroso , Animais , Humanos , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Environ Sci Pollut Res Int ; 31(17): 25940-25951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491238

RESUMO

Pesticide residue was one of the stress factors affecting quality and safety of Chinese herbal medicines (CHMs). The present study was designed to investigate the occurrence and dietary exposure of 70 pesticide residues in 307 samples of CHMs, including 104 American ginseng, 100 Ganoderma lucidum (G. lucidum), and 103 Dendrobium officinale (D. officinale) in Shandong Province, China. The study revealed that a total of 29 pesticides were detected in the majority (92.5%) of samples, and the pesticide residues of 85 (27.7%) samples exceeded the maximum residue levels (MRLs). Particularly, the maximum concentration of chlorpyrifos was 23.8 mg kg-1, almost 50 times of the MRLs in food in GB 2763-2021, while there's no standard restrictions specified in CHMs in China. The chronic, acute, and cumulative risk assessment results indicated that risk exposure of the three types of CHMs were unlikely to pose a health risk to consumers. However, more attention should be paid to the multiple residues with the presence of four or more pesticides in one sample and high over-standard rate of pesticides. The pesticide users and the government should pay more attention to the pesticides used in CHMs and regularly monitor the presence of these compounds. The study recommended the MRLs of these pesticides in CHMs should be established and perfected by the relevant departments in China.


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Praguicidas/análise , Alimentos , China , Contaminação de Alimentos/análise , Extratos Vegetais , Medição de Risco
5.
Biochem Biophys Res Commun ; 708: 149815, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531220

RESUMO

Sesamin, a special compound present in sesame and sesame oil, has been reported a role in regulating lipid metabolism, while the underlying mechanisms remain unclear. Autophagy has been reported associated with lipid metabolism and regarded as a key modulator in liver steatosis. The present work aimed to investigate whether sesamin could exert its protective effects against lipid accumulation via modulating autophagy in HepG2 cells stimulated with oleic acid (OA). Cell viability was evaluated using the CCK-8 method, and triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein, cholesterol (LDL-C), alanine aminotransferase (ALT), along with aspartate aminotransferase (AST) were assessed by oil red O staining, transmission electron microscopy (TEM), and biochemical kits to investigate the lipid-lowering effects of sesamin. Differentially expressed genes were screened by RNA sequencing and validated using real-time quantitative PCR and Western blot. Autophagy and mitophagy related molecules were analyzed employing TEM, Western blot, and immunofluorescence. The data shows that in HepG2 cells stimulated by OA, sesamin reduces levels of TG, TC, LDL-C, ALT, and AST while elevating HDL-C, alleviates the lipid accumulation and improves fatty acid metabolism through modulating the levels of fat metabolism related genes including PCSK9, FABP1, CD36, and SOX4. Sesamin restores the suppressed autophagy in HepG2 cells caused by OA, which could be blocked by autophagy inhibitors. This indicates that sesamin improves fatty acid metabolism by enhancing autophagy levels, thereby mitigating the intracellular lipid accumulation. Furthermore, sesamin significantly enhances the mitophagy and improves mitochondrial homeostasis via activating the PINK/Parkin pathway. These data suggest that sesamin alleviates the excessive lipid accumulation in HepG2 caused by OA by restoring the impaired mitophagy via the PINK1/Parkin pathway, probably playing a preventive or therapeutic role in hepatic steatosis.


Assuntos
Dioxóis , Fígado Gorduroso , Lignanas , Pró-Proteína Convertase 9 , Fatores de Transcrição SOXC , Humanos , Células Hep G2 , Pró-Proteína Convertase 9/metabolismo , Mitofagia , Ácido Oleico/metabolismo , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Triglicerídeos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fígado/metabolismo
6.
Prostaglandins Other Lipid Mediat ; 172: 106817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331090

RESUMO

Cardiovascular disease (CVD) has been the leading cause of death worldwide. As a chronic inflammatory disease, atherosclerosis (AS) acts as the initiating factor for CVD and reactive oxygen species (ROS) play a vital role in its development. Superoxide dismutases (SOD) can alleviate the detrimental effects of ROS and serve as the first line of defense through detoxifying the products derived from oxidative stress in vivo. Considering the potential preventive effects of high-density lipoprotein (HDL) on AS and the close relationship between CuZn superoxide dismutase (CuZnSOD) and HDL, the present work investigated whether CuZnSOD overexpression in swine could improve the function of HDL. Seven CuZnSOD transgenic swine, constructed by sperm and magnetic nanoparticles, demonstrated overexpressed CuZnSOD in the liver (P < 0.01) but comparable level to control in plasma (P > 0.05). CuZnSOD overexpression significantly down-regulated the levels of triglyceride (TG), apolipoprotein A-I (apoA-I) (P < 0.05), and high-density lipoprotein cholesterol (HDL-C) (P < 0.01) in plasma. In the presence of CuZnSOD overexpression, HDL3 significantly inhibited levels of IL-6 and TNF-α induced by oxidized low-density lipoprotein (oxLDL) (P < 0.05), indicating enhanced anti-inflammatory activity of HDL. At the same time, HDL-mediated cholesterol efflux did not decrease (P > 0.05). CuZnSOD overexpression improves the anti-inflammatory function of HDL despite decreased levels of HDL-C. In Conclusion, CuZnSOD overexpression improves HDL function in swine.


Assuntos
Lipoproteínas HDL , Superóxido Dismutase , Animais , Suínos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Lipoproteínas HDL/metabolismo , Animais Geneticamente Modificados , Interleucina-6/metabolismo , Interleucina-6/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/genética , Masculino , Fígado/metabolismo , Triglicerídeos/metabolismo , Triglicerídeos/sangue
7.
IEEE Trans Cybern ; 54(1): 476-485, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37018109

RESUMO

In this article, the issue of event-triggered multiasynchronous H∞ control for Markov jump systems with transmission delay is concerned. In order to reduce sampling frequency, multiple event-triggered schemes (ETSs) are introduced. Then hidden Markov model (HMM) is employed to describe multiasynchronous jumps among subsystems, ETSs, and controller. Based on the HMM, the time-delay closed-loop model is constructed. In particular, when triggered data are transmitted over networks, a large transmission delay may cause disorder of transmission data such that the time-delay closed-loop model cannot be developed directly. To overcome this difficulty, a packet loss schedule is presented and the unified time-delay closed-loop system is obtained. By the use of the Lyapunov-Krasovskii functional method, sufficient conditions with the controller design are formulated for guaranteeing the H∞ performance of the time-delay closed-loop system. Finally, the effectiveness of the proposed control strategy is demonstrated by two numerical examples.

8.
Food Addit Contam Part B Surveill ; 17(1): 56-65, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093555

RESUMO

In this study 13 heavy metals were analysed in representative livestock meat, poultry meat, livestock offal and poultry offal samples (20 per category) from marketplaces and retail stores in 16 cities in Shandong province, China. The investigated heavy metals were Cu, Cr, V, Ni, As, Se, Sn, Cd, Pb, Sb, Mn, Ba and Hg. Results revealed mean levels of total heavy metals in meat and offal of 1.56 mg/kg and 39.8 mg/kg, respectively. Cu, Cr, Mn, Ni, Se, Ba and Pb were found in all samples (100%), followed by Hg (95.0%), V (91.3%), Sn (73.8%), Cd (51.3%), As (21.3%) and Sb (11.3%). Hazard Quotient (HQ) and Hazard Index (HI) values showed that high meat intake can cause potential health risks. Thus, continuous monitoring of health risks and trends of heavy metals in meat products is needed, both for food safety and consumer's health.


Assuntos
Produtos da Carne , Mercúrio , Metais Pesados , Poluentes do Solo , Monitoramento Ambiental/métodos , Produtos da Carne/análise , Cádmio/análise , Chumbo/análise , Contaminação de Alimentos/análise , Poluentes do Solo/análise , Metais Pesados/análise , Mercúrio/análise , Medição de Risco , China
9.
Molecules ; 28(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38138624

RESUMO

Biomass-derived carbon materials have broad application prospects in energy storage, but still face problems such as complex synthesis paths and the massive use of corrosive activators. In this study, we proposed a mild and efficient pathway to prepare nitrogen-doped porous carbon material (N-YAC) using one-step pyrolysis with solid K2CO3, tobacco straw, and melamine. The optimized material (N-YAC0.5) was not only enriched with nitrogen, but also exhibited a high specific surface area (2367 m2/g) and a reasonable pore size distribution (46.49% mesopores). When utilized in electrodes, N-YAC0.5 exhibited an excellent capacitance performance (338 F/g at 1 A/g) in the three-electrode system, and benefitted from a high mesopore distribution that maintained a capacitance of 85.2% (288 F/g) at high current densities (20 A/g). Furthermore, the composed symmetric capacitor achieved an energy density of 14.78 Wh/kg at a power density of 400 W/kg. In summary, our work provides a novel and eco-friendly approach for converting biomass into high-performance energy-storage materials.

10.
Front Cell Infect Microbiol ; 13: 1274690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149007

RESUMO

Background: Human gut microbiota play a crucial role in the immune response of the host to respiratory viral infection. However, evidence regarding the association between the gut microbiome, host immune responses, and disease severity in coronavirus disease 2019 (COVID-19) remains insufficient. Methods: To better comprehend the interactions between the host and gut microbiota in COVID-19, we conducted 16S rRNA sequencing and characterized the gut microbiome compositions in stool samples from 40 COVID-19 patients and 33 non-pneumonia controls. We assessed several hematological parameters to determine the immune status. Results: We found that the gut microbial composition was significantly changed in COVID-19 patients, which was characterized by increased opportunistic pathogens and decreased commensal bacteria. The frequency of prevalent opportunistic pathogens Enterococcus and Lactobacillus increased, especially in severe patients; yet the abundance of butyrate-producing bacteria, Faecalibacterium, Roseburia, and Anaerostipes, decreased significantly, and Faecalibacterium prausnitzii might help discriminate severe patients from moderate patients and non-pneumonia people. Furthermore, we then obtained a correlation map between the clinical characteristics of COVID-19 and severity-related gut microbiota. We observed a notable correlation between the abundance of Enterococcus faecium and abnormal neutrophil or lymphocyte percentage in all COVID-19 patients. Faecalibacterium was positively correlated with lymphocyte counts, while negatively correlated with neutrophil percentage. Conclusion: These results suggested that the gut microbiome could have a potential function in regulating host immune responses and impacting the severity or consequences of diseases.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Clostridiales/genética , Gravidade do Paciente , Imunidade
11.
Hum Exp Toxicol ; 42: 9603271231191436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37537902

RESUMO

Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 µm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/ß-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Animais , Humanos , Material Particulado/toxicidade , Encéfalo , Barreira Hematoencefálica , Síndromes Neurotóxicas/etiologia
12.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446790

RESUMO

Neurofibromatosis type 1 is a rare autosomal dominant genetic disorder, with up to 50% of patients clinically displaying skeletal defects. Currently, the pathogenesis of bone disorders in NF1 patients is unclear, and there are no effective preventive and treatment measures. In this study, we found that knockout of the NF1 gene reduced cAMP levels and osteogenic differentiation in an osteoblast model, and icariin activated the cAMP/PKA/CREB pathway to promote osteoblast differentiation of the NF1 gene knockout cell model by increasing intracellular cAMP levels. The PKA selective inhibitor H89 significantly impaired the stimulatory effect of icariin on osteogenesis in the NF1 cell model. In this study, an osteoblast model of NF1 was successfully constructed, and icariin was applied to the cell model for the first time. The results will help to elucidate the molecular mechanism of NF1 bone disease and provide new ideas for the clinical prevention and treatment of NF1 bone disease and drug development in the future.


Assuntos
Doenças Ósseas , Neurofibromatose 1 , Humanos , Osteogênese/genética , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Genes da Neurofibromatose 1 , Técnicas de Inativação de Genes , Diferenciação Celular/genética , Doenças Ósseas/metabolismo , Osteoblastos
13.
IEEE Trans Cybern ; 53(12): 8000-8012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37167034

RESUMO

This article addresses the practically predefined-time adaptive fuzzy tracking control problem of strict-feedback nonlinear stochastic systems, where the system under consideration includes stochastic disturbances and uncertain parameters. First, in this study, practically predefined-time stochastic stabilization (PPSS) in the p th moment sense is introduced, and a Lyapunov-type criterion for PPSS is proposed to assure the stabilization of the system considered. With these ideas, based on the backstepping design method, a semiglobally practically predefined-time adaptive fuzzy tracking control algorithm is proposed with a fuzzy system used to approximate the unknown part of the system. Moreover, the settling time of the system response can be arbitrarily adjusted in a mean-value sense, and such freedom can be used to improve the stochastic finite-/fixed-time control results. Finally, a practical example and a numerical example of a comparison are provided to validate the effectiveness of the proposed control strategy.

14.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36749630

RESUMO

The tumor suppressor TP53 is the most frequently mutated gene in human cancers. Mutant p53 (mutp53) proteins often accumulate to very high levels in human cancers to promote cancer progression through the gain-of-function (GOF) mechanism. Currently, the mechanism underlying mutp53 accumulation and GOF is incompletely understood. Here, we identified TRIM21 as a critical E3 ubiquitin ligase of mutp53 by screening for specific mutp53-interacting proteins. TRIM21 directly interacted with mutp53 but not WT p53, resulting in ubiquitination and degradation of mutp53 to suppress mutp53 GOF in tumorigenesis. TRIM21 deficiency in cancer cells promoted mutp53 accumulation and GOF in tumorigenesis. Compared with p53R172H knockin mice, which displayed mutp53 accumulation specifically in tumors but not normal tissues, TRIM21 deletion in p53R172H knockin mice resulted in mutp53 accumulation in normal tissues, an earlier tumor onset, and a shortened life span of mice. Furthermore, TRIM21 was frequently downregulated in some human cancers, including colorectal and breast cancers, and low TRIM21 expression was associated with poor prognosis in patients with cancers carrying mutp53. Our results revealed a critical mechanism underlying mutp53 accumulation in cancers and also uncovered an important tumor-suppressive function of TRIM21 and its mechanism in cancers carrying mutp53.


Assuntos
Mutação com Ganho de Função , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Mutação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Free Radic Biol Med ; 196: 156-170, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36682578

RESUMO

The imbalance of mitochondrial fission and fusion dynamics causes ischemic cardiomyocyte apoptosis and heart injury by affecting mitophagy. Regulation of mitochondrial dynamics is an important therapeutic strategy for ischemic heart diseases. Considering the important roles of MORN motifs in heart diseases and chloroplast fission, we aimed to investigate the possible role of MORN repeat-containing protein 4 (MORN4) in the progression of myocardial infarction (MI), ischemic cardiomyocyte apoptosis, mitochondrial dynamics, and mitophagy. We found that in the MI mouse, MORN4 knockdown remarkably accelerated cardiac injury and fibrosis with deteriorating cardiac dysfunction. Sphingosylphosphorylcholine (SPC) alleviated ischemic cardiomyocyte apoptosis and heart injury through increased level of MORN4, indicating a vital function of MORN4 in heart with SPC used to clarify the molecular mechanisms underlying the functions of MORN4. Mechanistically, we found that MORN4 directly binds to MFN2 and promotes the phosphorylation of MFN2 S442 through Rho-associated protein kinase 2 (ROCK2), which mediates beneficial mitophagy induced by mitochondrial dynamics, while SPC promoted the binding of MORN4 and MFN2 and the process. Taken together, our data reveal a new perspective role of MORN4 in ischemic heart injury, and report that SPC could regulate myocardial mitochondrial homeostasis by activating the MORN4-MFN2 axis during the ischemic situation, this finding provides novel targets for improving myocardial ischemia tolerance and rescue of acute myocardial infarction.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Isquemia Miocárdica , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Dinâmica Mitocondrial , Mitofagia/genética , Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
16.
Environ Sci Pollut Res Int ; 30(2): 3743-3758, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35953745

RESUMO

Human exposure to aflatoxins (AFs) and zearalenone (ZEA) has not been sufficiently investigated. Here, we analyzed the exposure level and health risks posed by AFs (B1, B2, G1, G2) and ZEA through cooking oil consumption in Shandong, China. The individual daily consumption of cooking oil was calculated through 2745 questionnaires during 2017-2019. The average contamination levels of mycotoxins were estimated by examining 60 cooking oil samples. For the peanut oil, AFs ranged from <0.2 to 274 µg/kg, with a positive rate of 66.6% (20/30). Average levels of 36.62 µg/kg AFB1 and 44.43 µg/kg total AFs were found. Over-the-limit level (20 µg/kg) of AFB1 was detected in 8/30 samples. Estimated daily intake (EDI) and margin of exposure (MOE) for age-stratified population groups showed that children are facing highest adverse health risk with AFB1 (MOE 5.88-6.39). The liver cancer incidences attributable to AFB1 exposure are non-negligible as 0.896, 0.825, and 0.767 cases per 100,000 for 6-14 age group, 15-17 age group, and adult labor-intensive workers. Over-the-limit level (60 µg/kg) ZEA contamination was detected in 25/30 corn oil samples with a 50th percentile value of 97.95 µg/kg. Our health risk assessment suggested significant health risks of enterohepatic (inflammation and cancer), reproductive, and endocrine systems posed by AFs and ZEA. However, the health risk of immunotoxicity is unclear because currently animal study data are not available for the immunotoxicity induced after long-term exposure. In general, the health risks posed by mycotoxins are non-negligible and long-term mycotoxin surveillance is necessary.


Assuntos
Aflatoxinas , Micotoxinas , Zearalenona , Animais , Adulto , Criança , Humanos , Micotoxinas/análise , Aflatoxinas/análise , Óleos de Plantas/análise , Verduras , Contaminação de Alimentos/análise
18.
Sci Total Environ ; 856(Pt 2): 159141, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191706

RESUMO

Rare earth elements (REEs) can cause neoplasms, reduce bone density, affect children's intelligence, etc., and diet is an important way for the human body to absorb REEs. With the increasing use of REEs, the impact on human health is becoming more and more important. So, we used a probabilistic assessment method with Monte Carlo simulation to evaluate the dietary intake of REEs by residents of a large light rare earth mining area in Shandong Province. 16 REEs in 447 samples (including wheat, maize, dry beans, vegetables, fruits and eggs) were detected. The mean value of total REEs for all samples was 286.96 µg/kg, and of light rare earth elements (LREEs) was 270.18 µg/kg. Among of LREEs, Ce, La, Nd and Pr were dominant. The REEs content of different food categories showed that wheat, leafy vegetables and allium vegetables had higher content of REEs, melons vegetables, root vegetables, fruits and eggs had the lowest content. The mean dietary intake of rare earth oxides for the whole population was 4.20 µg/kg bw/d, wheat and vegetables (leafy vegetables, allium vegetables and root vegetables) were the main sources of REEs. Dietary intake estimates of REEs by age and gender did not exceed the acceptable daily intake which means implying no impact on human health.


Assuntos
Metais Terras Raras , Criança , Humanos , Metais Terras Raras/análise , Mineração , Verduras , Nível de Efeito Adverso não Observado , Ingestão de Alimentos , China
19.
Nat Metab ; 4(12): 1830-1846, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536137

RESUMO

The glycolytic enzyme lactate dehydrogenase A (LDHA) is frequently overexpressed in cancer, which promotes glycolysis and cancer. The oncogenic effect of LDHA has been attributed to its glycolytic enzyme activity. Here we report an unexpected noncanonical oncogenic mechanism of LDHA; LDHA activates small GTPase Rac1 to promote cancer independently of its glycolytic enzyme activity. Mechanistically, LDHA interacts with the active form of Rac1, Rac1-GTP, to inhibit Rac1-GTP interaction with its negative regulator, GTPase-activating proteins, leading to Rac1 activation in cancer cells and mouse tissues. In clinical breast cancer specimens, LDHA overexpression is associated with higher Rac1 activity. Rac1 inhibition suppresses the oncogenic effect of LDHA. Combination inhibition of LDHA enzyme activity and Rac1 activity by small-molecule inhibitors displays a synergistic inhibitory effect on breast cancers with LDHA overexpression. These results reveal a critical oncogenic mechanism of LDHA and suggest a promising therapeutic strategy for breast cancers with LDHA overexpression.


Assuntos
L-Lactato Desidrogenase , Neoplasias , Animais , Camundongos , Lactato Desidrogenase 5 , L-Lactato Desidrogenase/metabolismo , GTP Fosfo-Hidrolases , Isoenzimas/genética , Isoenzimas/metabolismo , Guanosina Trifosfato
20.
RSC Adv ; 12(53): 34165-34175, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545622

RESUMO

Efficient and inexpensive sorbents play a key role in removing organic pollutants from water bodies. In this study, a series of high surface area activated carbons (ACs) with excellent adsorption performance was prepared by co-pyrolysis of the waste tobacco straw and the waste low-density polyethylene (LDPE) mulch film. Using the maximum adsorption capacity of methylene blue (MB) as an indicator, the variables such as LDPE content, K2CO3 to raw material ratio, activation time, and activation temperature were optimized. The optimal synthesis conditions were as follows: LDPE content of 40%, K2CO3/raw material ratio of 1 : 2, activation temperature of 900 °C, and activation time of 100 min. The maximum adsorption capacity of MB was up to 849.91 mg g-1. The results of scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and BET showed that the moderate addition of LDPE was beneficial to the pyrolysis of the waste tobacco straw, bringing about the enrichment of surface groups (-OH, -COOH) and increasing its specific surface area and pore volume (up to 1566.7 m2 g-1 and 0.996 cm3 g-1, respectively). The equilibrium data of MB adsorption by the composite activated carbon (PAC) was consistent with the Langmuir isotherm, while the adsorption kinetics were better described by a pseudo-second-order kinetic model. This work reveals the feasibility of LDPE mulch film and waste tobacco straw as potential and inexpensive precursors for preparing high surface area AC adsorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA